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Magnetic parameters of superparamagnetic
inclusions of hematite in «-alumina

Recent investigations of the «Al,0;—Fe,0;
system [1-3] suggest the presence of superpara-
magnetic inclusions of aFe,0; at low concen-
trations of Fe,05. Since the Mossbauer and EPR
studies were made using polycrystalline specimens,
the magnetic parameters g and K of the inclusions
could not be determined.

In an effort to determine the nature and size of
the precipitates from their magnetic parameters,
iron-doped alumina single crystals have been
investigated employing ferrimagnetic resonance

techniques. The crystals were doped by diffusion-

at 1773 K. Measurements were made in a standard

~X-band spectrometer at a frequency of 9.25 GHz.
The resonance field, H,, was measured as a
function of the angle between the external
magnetic field and the c-axis of the alumina
matrix.

The resonance conditions for ferrimagnetic
samples possessing magnetocrystalline anisotropy
are well known (see for example [4]). If the
magnetocrystalline anisotropy is taken to have
axial symmetry and the shape anisotropy of the
inclusions is small, then the resonance condition,
provided w/y > K /M, K, [M, is:

H, = wly—(K/M)(3 cos*6 — 1)
—(2K,/M)(sin®20 —sin*8) (1)

where 6 is the angle between the applied field and
the axis of axial symmetry.

Typical results at room temperature are shown
in Fig. 1 along with the theoretical curve calculated
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from Equation 1. The data of Fig. 1 and similar
data obtained from other specimens are un-
ambiguous evidence for the axial magnetocrystal-
line anisotropy of the iron-rich precipitate and the
coincidence of its lattice with that of the
aluminium-rich matrix. The room-temperature
constants calculated from the orientation de-
pendence of the resonance field are K,/M=
—39.18G and K,/M=06.54G. The splitting
factor, g, is found to be 2.010 + 0.004. The solid
curve in Fig. 1 is drawn for these parameters.

The anisotropy field of bulk aFe,0; at room
temperature has been measured by Anderson [5]
who obtained Hy =K, /M=-15000G, a value
almost 400 times larger than the one obtained in
the present experiment. This can be explained by
assuming that the inclusions are very small; in that
case, thermal fluctuations of the direction of
magnetization can drastically decrease the
measured anisotropy field [6]. This, in fact,
provides us with a means for estimating the
particle size. It has been shown [7] that, in the
case of axial symmetry, the measured anisotropy
of a coherent assembly of small magnetic particles
is given by:

HS? = Hy (1 —3x"' coth x +3x7?)/(cothx —x7")

(@)
where H, is the bulk anisotropy field, x =
IVHIKT, I is the intrinsic magnetization of the
particles, V is the particle volume and H is the

applied field.
In the limit x <1, Equation 2 reduces to

HZP =xH, /5 3)
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Figure 1 Dependence of the resonance
field H, on the angle 8 between the applied
field and the crystal c-axis. The solid curve
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80 90 is calculated for K,/M=—39.18G,
Hic K,/M=654Gandg=2.010.
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and the particle volume is given by
V = (SKTILH)(HAIHED) @

where Hy = —15000 G and H3" is the experimental
value, —39.18 G. We have also T=300K, I, = 3.1
ergem™ G™! [8], and H = 3300G. Substituting
these values into Equation 4, we get V' =2.56 X
1002 cm® or a=VY® =37.5A. This is some-
what smaller than the size estimated by Kalyamin
et al. 2] using the Mssbauer effect (50 to 100 A).
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Phase decomposition in liquid-quenched
eutectic Au—Ge alloy

Liquid-quenched (LQ) Au—Ge alloys have been
observed to contain a number of metastable phases
which depend on quenching condition and rate, as
well as alloy content [1-4]. Scott [4] recently
investigated the formation and stability of the
metastable phases in LQ eutectic Au—27% Ge (all
compositions are given in atomic percent) by
X-ray diffraction and thermal analysis techniques.
He found that LQ from the temperature range
500 to 1300° C yields a three-phase microstructure:
Auaich fcc phase, a; metastable hcp-phase, §;
and a second metastable phase, v, with a bct
structure, Samples quenched at a slower rate from
500° C contained only the o and the 7 phases.
Furthermore, on the basis of the DTA results
during isochronal annealing, Scott [4] concluded
that the LQ eutectic Au—Ge decomposes in two
single stages: (i) decomposition of the §-phase into
equilibrium &« and Ge in the temperature range
70 to 100° C; (i) decomposition of the b ¢ t-y into
o and Ge at about 125° C.

X-ray diffraction was used mainly for identifying
the metastable phases in Scott’s study. Because of
the coexistence of a number of constituent phases
with widely different volume fractions, and in
view of the fact that the mass absorption coef-
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ficient of Au is very high as compared to that of
Ge, any Ge-rich phase which may be present as a
minor constituent can easily go undetected.

In the present work the Au—27% Ge eutectic
alloy was prepared by inert-gas induction melting
of appropriate amounts of high-purity materials.
The homogeneity of the alloy was ensured by
repeated melting and quenching into water. Small
samples of this alloy were then LQ from 800° C
using the gun-technique, yielding typical cooling
rates in excess of 10%° Csec™ . Samples from the
bulk of the gun-quenched foils (~60 to 70 um
thick) were used for isochronal and isothermal resis-
tivity measurements. The resistivity measurements
were made employing a standard four-probe poten-
tiometric technique. Ageing of the resistivity
samples was carried out in appropriate baths con-
trolled to +0.5° C. The resistivity measurements
were made in acetone at 21° C. X-ray diffraction
measurements on the central bulk samples were
carried out on a diffractrometer. A Debye—Scherrer
camera was used for obtaining powder patterns from
the LQ thin edge flakes. It was ensured that the bulk
samples and the flakes used in X-ray analysis con-
tained the same phases in the as-LQ condition.
Small flakes from the edges of the gun-quenched
samples were also used for TEM. Ageing of the
TEM specimens was done i situ in the microscope
hot stage.
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